From Dr. Moskowitz’s previous article in Pathways (issue 10), we learned that the theoretical effect of vaccines on the infectious diseases they are designed to protect against is misleading at best.

He also illuminated the potential long-term consequences of vaccines on an individual’s overall health and wellness. I would like to present what is known about the body’s immunologic response when exposed to a microorganism naturally as compared to the response generated by the conventional vaccines. Questions that this discussion will raise are:
1. Can the immune responses generated by the vaccines create a pattern of immune imbalance that actually compromises the child’s immune system?

2. Does the resulting pattern of immune imbalance promote imbalances in other body systems resulting in chronic health issues?

3. What is known about reversing the imbalance generated by vaccines and/or other immune stressors?

We have known for decades that getting the childhood diseases naturally results in a permanent immunity to the specific microorganism. Getting the vaccines results in a temporary immunity, meaning that susceptibility is deferred and repeated booster shots will be required for the ENTIRE life of the individual. In the 80s, the specific immune mechanisms involved in vaccine-induced immunity was discerned. In the 90s, the same mechanisms in humans were explored. T cells (thymus cells) are the major cell in the immune system; they direct and control all immune responses as well as immune memory. Subsets of T cells are the T-helper cells (Th). T-helper cells coordinate and direct the safest and most effective immune response. Using Moskowitz’s measles example, we know that, when infected with the measles virus naturally via the nasopharyngeal route, the body produces a Th1 response that externalizes the infection and provides permanent immunity. \(^1\) Fever, rash, coughing, sneezing, etc are signs of the body ridding itself of this infection. Bypassing the normal body lines of defense by injecting a vaccine forces the immune system into an emergency-based Th2 response which serves to internalize the infection. You don't get the disease but are susceptible to the disease later since the Th2 response results in poor immune memory. So, if a natural, viral (measles) infection results in a Th1 response, why don’t we make vaccines that could elicit the same response.

In 1995, Golding and Scott, \(^2\) published the need for strategies to make vaccines that would generate the “required” Th cell to the corresponding microorganism. Since that time, attempts to
produce vaccines that would generate a “natural”-type response have failed. So, we are left with vaccines that generate “protective” responses as a second choice. How does this work? In vaccine-induced Th2 responses, called humoral responses, the body produces large quantities of specific antibodies that block the virus from entering cells. This response is why a vaccinated child doesn’t get a full blown infection and why the child won’t spread as many viruses into the environment. However, antibodies cannot get into cells to eliminate viruses once the viruses are in the cells or cannot kill infected cells themselves. Therefore, the body has no choice other than to internalize the virus and be chronically infected when the body is forced into a Th2 antibody response. The body is essentially constipated with viruses that it cannot expel!

Unvaccinated children who are exposed to measles will generate the immune response that is required to make permanent immunity as well as kick out the virus from the body. The normal, healthy body’s response to viruses is to externalize them. To suppress this natural response can be as hazardous to our health as suppressing waste elimination from the bowel or toxin release from the skin. Natural Th1 responses generate cell-mediated responses that serve to both neutralize viruses by producing antibodies and most importantly stimulate the immune cells necessary to kill any cells infected with viruses. The body works to externalize and eliminate viruses when the Th1 response is generated. So we understand now that when a Th2 response is induced, “it drives the infection deeper into the interior and causes us to harbor it chronically.”

It is commonly held that the presence of antibody to viruses is a sign of a chronic on-going infection not a sign of immunity.

Our bodies generally need to have Th1 cells to defend against viral, Gram-negative bacterial, and fungal infections, and tuberculosis, as well as to protect against cancer. Th2 response is necessary to protect against Gram-positive bacterial, parasitic infections, as well as to neutralize toxins from microorganisms and the environment. A balance of Th1/Th2 cells in the body is defined as immunostasis (or immune balance) and is required for optimum health and wellness. Vaccines promote a failure in immunostasis by making the Th2-type cells dominant.

Can the immune responses generated by the vaccines create a pattern of immune imbalance that actually compromises the child’s immune system?

We saw how a vaccine-generated Th2 response can burden the body and exhaust the immune system by forcing the body to deal with a chronic ongoing infection. A Th2 response to a specific virus infection will specifically suppress Th1 cells from becoming activated against the same virus. With the resulting failure to generate a Th1 response, cells infected with virus
cannot be destroyed. Chronically infected cells, like nerve cells, can occasionally trick the immune system into reacting to and attacking similar nerve cells resulting in autoimmune disease such as multiple sclerosis, Guillain Barré, etc. Cells chronically infected with live vaccine viruses also risk having the viruses mutate, trade genes with each other, as well as interact with the host cell DNA. The live vaccines used presently include, measles, mumps, rubella, varicella (chickenpox), and flu-mist. Overactive Th2 activity, underactive Th1 capability, chronic infection, potential for novel virus infection and autoimmunity characterize failed immunostasis or Th-cell imbalance in vaccinated children.

The live vaccines used presently include, measles, mumps, rubella, varicella (chickenpox), and flu-mist. Overactive Th2 activity, underactive Th1 capability, chronic infection, potential for novel virus infection and autoimmunity characterize failed immunostasis or Th-cell imbalance in vaccinated children.

The classic work by Ader & Cohen taught us that the immune system can be classically conditioned. Like Pavlov training dogs to salivate at only a ringing bell, the immune system can be conditioned into inappropriate responses through repeated vaccinations. Natural exposure to the environment and infectious diseases conditions immune responses to be more Th1 dominant; whereas repeated vaccine exposure conditions responses to be more Th2 dominant. A child with Th2-dominance is more susceptible to intracellular organisms such as viruses and is therefore more prone to chronic ear, respiratory, and gastrointestinal infections. Children need a vibrant Th1 response to appropriately deal with the childhood intracellular viral infections, whooping cough, and hemophilus. Healthy immune systems are said to be in Th1/Th2 balance or “immunostasis.” Unhealthy immune systems are said to have a failure in or an imbalance in “immunostasis.” Parris Kidd has compiled a fascinating review indicating that there may be a link between Th1/Th2 balance and disease. Diseases such as allergies, asthma, atopic dermatitis, systemic lupus erythematosus, cancer, tuberculosis, and AIDS, appear to result from a Th2-dominant immune response. It is imperative that we discern the impact of conditioning children’s immune responses to be more Th2 dominant and the consequences of this pattern on the incidence of the Th2-dominant diseases listed by Parris Kidd. When we become Th2 dominant, the antibody-producing part of our immune systems gets derailed like a freight train going a hundred miles per hour, out of control. E. Hurwitz et al has shown that unvaccinated children have less incidence of respiratory conditions, such as asthma and allergies, when compared to their vaccinated counterparts, thereby supporting Kidd’s hypothesis.

The focus of much current research is the role of inflammatory responses of varying degrees of severity serving as precursors to cancer, cardiovascular disease, and chronic degenerative diseases being influenced by the different Th cells. Th2 immune responses direct and support bad, excessive inflammation whereas Th1 cells promote healthier type inflammation.

With evidence to support the adverse effects on the immune system by the vaccines, then why do we continue to vaccinate? The role of public health office is to reduce the incidence of infectious disease in the pediatric population. Vaccines generate protective immune responses
on a temporary basis and reduce the incidence of infectious disease in the vaccinated kids as well as the unvaccinated kids. Why are the unvaccinated kids protected too? The risk of exposure to the disease is lessened when more individuals are vaccinated. As described, that happens because vaccinated children have tons of antibodies which neutralize infectious virus thereby lessening their ability to spread viruses to others. The phenomenon of unvaccinated children being protected by the vaccinated is known as herd immunity. Herd immunity is a welcomed effect of the vaccination process from a public health perspective. But, according to physicians like James Taylor, this may not be a good thing. Unvaccinated children progress into their adult years with a diminished chance of exposure to childhood diseases.

With the passage of time and the vaccinated population not getting their boosters, all become susceptible to the disease. Susceptibility to childhood diseases when we are adults greatly increases severe morbidity and mortality from those diseases. Parents and the powers that-be desire this vaccination approach in order to defer infectious disease to a later date so they do not have to stay home, miss work, and care for a sick child. Th2 dominance from vaccinations results in children being at risk of diseases arising from chronic ongoing infections as well as being vulnerable to the damaging effects of the infectious disease they were vaccinated against when they age and forget about getting booster vaccinations. On the other hand, there are parents anxious to expose their children to the childhood diseases through measles and chickenpox parties so a natural (Th1) immunity can be established early, provide lifelong immunity and appropriately condition the immune system to the natural environment.

Does the resulting pattern of immune imbalance promote imbalances in other body systems resulting in chronic health issues?

The 80s and 90s also brought us an explosion of research describing the various chemicals released by cells, especially the Th cells and the receptors on cell membranes capable of reacting to these chemicals. The chemicals (cytokines, interleukins) released by T cells act as signals interacting with satellite dish like receptors on all cell membranes, especially the cells of the nervous system. Similarly, chemical communication signals from the nervous system (neurotransmitters, neurohormones) can react with T-cell satellite dishes. T-cell chemicals can react and effect the entire brain. The concept that science now employs is psychoneuroimmunology. So, what you think can affect your nervous and immune systems as well as the immune and nervous system affecting how you think. So, when the immune system is out of balance and depressed, it sends out interleukins which react with the brain, generating
How Do Vaccines Work? Immune Mechanisms and Consequences

Written by Stephen C. Marini, DC, PhD
Thursday, 01 March 2007 00:00 - Last Updated Thursday, 26 February 2015 09:38

depressed behavior, depressed moods and depressed thinking.

This depression theme excites the sympathetic (flight or fight) nervous system and the cycle keeps on streaming out of control. Patterns of immune imbalance as seen with a Th2 vaccine-conditioned immune responses beget patterns of abnormal neurological and psychological patterns which can then affect all other body systems. Patterns of subluxation have been shown to result from and enhance sympathetic activity. Therefore, patterns of immune imbalance can generate subluxation and vice versa. Other factors that condition as well as support a Th2-dominant immune pattern and should be avoided are negative consciousness patterns, which generate stress, and antibiotics, which delete the normal Gram-negative bacteria and suppress Th1 cells, sugar, caffeine, trans-fatty acids, progesterone, antibiotics, mercury, oxidative damage etc.

What is known about reversing the imbalance generated by vaccines and/or other immune stressors?

We know that a fetus thrives in a progesterone-rich maternal environment that is Th1 suppressive. But nature solves this by first exposing the baby to normal, probiotic bacteria while coming through the birth canal. These friendly Gram-negative bacteria from the mother stimulate Th1 activity in the neonate. Secondly, breastmilk contains the normal probiotic bacteria as well as the prebiotic chemicals that selectively supports the growth of the good bacteria and Th1 activity and discourages the growth of the bad fermenting-type bacteria. Colostrum and breast milk are also rich in the interleukins necessary to stimulate Th1 activity. It is understandable from this knowledge that breastfeeding is recommended for at least one year. Lastly, exposure to environmental viruses, other Gram-negative bacteria, and fungi will also stimulate neonatal Th1 activity. It is apparent that newborns who are delivered by C-section, not breastfed, and receive their baby shots have a remarkable squashing of their Th1 capability. Repeated vaccinations, poor nutrition, and nerve interference from subluxations, serve to support this failure in immunostasis. Things to do to reinforce Th1 activity and assist in reversing the immune imbalance generated by vaccines, C-sections, formula-only feeding, and other immunostasis disrupters, include developing positive, affirming consciousness behavior patterns and choices individually as well as within the family unit. Antioxidants, mushroom extracts, melatonin, dehydroepiandrosterone (DHEA), probiotic bacteria such as Lactobacillus acidophilus and GG, phytosterols and sterolins, and omega-3-fatty acids (fish oils) are just a few things that have been shown to increase Th1 levels. Chiropractic adjustments are also recommended to reduce the sympathetic nervous system influence on Th1 suppression. The summary table will review the roles of the Th1 and Th2 responses as well as list what is known...
Concerns for the future well being of our children should include yearly evaluations of their immune balance either through direct T-cell assessment or indirect analyses through cytokine evaluation. If children must submit to the current vaccine schedule, their immune systems need to be evaluated for T-cell imbalances and all steps necessary employed to restore immune balance prior to the onset of chronic health issues. On the vaccine strategy end, it appears that the future focuses on the “dream vaccine.” This vaccine will consist of a large viral DNA strand containing spliced genes from all the microorganisms desired for vaccination. The genetically engineered DNA will be injected into the baby and then be integrated into the child’s cells. Once inside the cell, the vaccine DNA will be treated like the cell’s own DNA allowing the host cell to produce vaccine components over a prolonged period. So, the child’s cells will serve as their own vaccine manufacturing plant supplying the body with continuous booster stimulation for the immune system. Such implantation technology has already been implemented with the use of the Norplant device designed to release birth control medication over a 3 to 5-year period. Will the vaccine device generate the appropriate Th response? I cannot see how it can, but the real issue, from the public health standpoint, is not whether the appropriate Th response is generated but is a protective, antibody-generating response stimulated. So, we will end up where we began with regard to having vaccines generate Th2 responses only to replace that strategy with an implanted device that will condition the immune response the same way. The prospect of having our children implanted with a DNA-based vaccine device that promote an immune conditioning outcome over years is harrowing. Maintaining immunostasis as a result of this vaccine strategy will be a challenging struggle for years to come.

References:

1. Taylor, J. Which Arm of the Immune Response most Likely Plays the Predominant Role in Host Defense Against Influenza Virus: humoral or cell-mediated? Medscape Feature, 1998, 08.98, p.443

How Do Vaccines Work? Immune Mechanisms and Consequences

Written by Stephen C. Marini, DC, PhD
Thursday, 01 March 2007 00:00 - Last Updated Thursday, 26 February 2015 09:38

This article appeared in Pathways to Family Wellness magazine, Issue #13.